A Hybrid Prediction System Using Rough Sets and Artificial Neural Networks
نویسنده
چکیده
This paper illustrates a hybrid prediction system consists of Rough Set Theory (RST) and Artificial Neural Network (ANN) for processing medical data. In the process of developing a new data mining technique and software to aid efficient solutions for medical data analysis, we propose a hybrid tool that incorporates RST and ANN to make efficient data analysis and suggestive predictions. In the experiments, we used spermatological data set for predicting quality of animal semen. The data set used in the experiments is subjected to quantize and normalize, and use this as a reflection of the internal system state. The RST is used as a tool for reducing and choosing the most relevant sets of internal states for predicting the semen fertilization potential. Chosen optimal data set is input to constructed neural network with supervised learning algorithm for the prediction of semen quality. This paper demonstrates that the RST is an effective pre-processing tool for reducing the number of input vector to ANN without reducing the basic knowledge of the information system in order to increase prediction accuracy of the proposed system. The resulting system is a hybrid prediction system for medical database called an Intelligent Rough Neural Network System (IRNNS).
منابع مشابه
Intelligent Failure Domain Prediction in Complex Telecommunication Networks with Hybrid Rough Sets and Adaptive Neural Nets
Automated fault forecasting proactivity offers a promising closed-loop approach for conventional network failure management activities. Automated intelligent failure forcasting requires the capability to prefilter the observation data so as to remove irrelevant features or factors from multi-dimensional observation data. In this paper, we propose a new hybrid methodology of combining the rough-...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
متن کاملThe integrated methodology of rough set theory and artificial neural network for business failure prediction
This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining rough set approach and neural network. We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables is reduced with no information loss through rough set approach. And then, thi...
متن کاملHybrid Rough Sets/Cellular Neural Networks Approach to Development of a Decision Making System
This paper describes a hybrid framework for this kind of switching circuit. In this framework, Cellular Neural Networks (CNN) and rough sets are integrated into a hybrid system and used cooperatively during the system lifecycle. Rough sets and CNN were chosen for this application because they can discover patterns in ambiguous and imperfect data and provide tools for data and pattern analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011